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The retarded Green’s function for the linearized version of the equation of the mixed 
type governing the potential flow around a rotating helicopter blade or a propeller 
(with no forward motion) is derived and is shown to constitute the unifying feature 
of the various existing approaches to  rotor acoustics. This Green’s function is then 
used to pinpoint the singularity predicted by the linearized theory of rotor acoustics 
which signals its experimentally confirmed breakdown in the transonic regime : the 
gradient of the near-field sound amplitude, associated with a linear flow which is 
steady in the blade-fixed rotating frame, diverges on the sonic cylinder at the 
dividing boundary between the subsonic and supersonic regions of the flow. From the 
point of view of the equivalent Cauchy problem for the homogeneous wave equation, 
this singularity is caused by the imposition of entirely non-characteristic initial data 
on a spacetime hypersurface which, a t  its points of intersection with the sonic 
cylinder, is locally characteristic. It also emerges from the analysis presented that the 
acoustic discontinuities detected in the far zone are generated by the quadrupole 
source term in the Ffowcs Williams-Hawkings equation and that the impulsive noise 
resulting from these discontinuities would be removed if the flow in the transonic 
region were to be rendered unsteady (as viewed from the blade-fixed rotating frame). 

1. Introduction 
Experimental data on the sound generated by a rotating blade whose tip moves at 

a supersonic speed have been available since the early works of Bryan (1920) and 
Hilton (1939); nevertheless, many aspects of the ekisting data on transonic and 
supersonic rotor acoustics still remain unexplained. As first emphasized by Lilley 
et a2. (1953), certain features of these data can already be understood on the basis of 
the radiative properties of a circularly moving supersonic point soutce (cf. Lowson 
1965 ; Lowson & Jupe 1974). Historically, however, the theoretical framework of 
rotor acoustics has developed mainly along the lines of Lighthill’s acoustic analogy 
(Lighthill 1952). When applied to the radiation from a moving body, this approach 
leads to an inhomogeneous wave equation for the sound amplitude which has three 
source terms : a monopole term arising from the thickness af the body ; a dipole term 
involving the loading, i.e. the pressure force, on the surface of the body; and a 
quadrupole term which encompasses all the remaining nonlinear effects (Ffowcs 
Williams & Hawkings 1969). The formal solution of this wave equation, by means of 
its retarded Green’s function for unbounded space, is known as the Ffowcs 
Williams-Hawkings equation and constitutes the point of departure for most 
theoretical studies on the subject (see e.g. Farassat 1975; Hanson 1983). 

A knowledge of the exact values of the various source terms in the Ffowcs 
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Williams-Hawkings equation requires knowledge of the flow field and so of the 
solution itself. However, in the linearized regime of the theory, in addition to the 
monopole term that is specified by the shape and the velocity of the rotating blade, 
the dipole term is known to within the zeroth order in the perturbation quantities, 
and the quadrupole term which is of the second order can be ignored. For this reason, 
the earlier calculations in the literature are based primarily on the linearized theory 
and are concerned only with thickness and loading noise. The agreement between the 
results of these calculations and the experimental data on helicopter rotors is good 
only as long as the tip Mach number of the rotating blade lies well below unity; 
striking discrepancies show up, however, as this Mach number approaches and 
exceeds 0.9 (Schmitz & Boxwell 1976; Schmitz, Boxwell & Vause 1977; Yu, 
Caradonna & Schmitz 1978; Boxwell, Yu & Schmitz 1979; Schmitz & Yu 1981). In 
particular, the flow in the vicinity of the tip of the blade develops shocks (Kittlcson 
1983) which a t  higher Mach numbers cease to be local and propagate into the 
radiation zone in the form of acoustic discontinuities (Schmitz & Yu 1986). 

The shock discontinuities observed in the near field are nonlinear featdres which 
do in fact emerge from the numerical integration of the tlonlinear equation of 
potential flow in the transonic regime (Caradonna & Isom 1076). A potential flow 
that is steady in the blade-fixed rotating frame is governed by a partial differential 
equation which undergoes a change in type - from elliptic to hyperbolic - across the 
surface where the fluid velocity (in the rotating frame) equals the local sound 
velocity. The numerical solutions of this mixed equation for appropriate boundary 
conditions entail the same shock discontinuities in the transonic regime as those 
observed in the region surrounding the blade tip (see also Sankar & Yrichatd 1’985; 
Strawn & Caradonna 1986). When the ncar-field flow obtained from the nonlinear 
potential-flow equation is used for calculating the dipole and quadrupole source 
terms in the Ffowcs Williams-Hawkings equation, the far-field nonlinear features - 
such as the progressive distortion of the waveform with increasing Mach number and 
the eventual formation of an acoustic discontinuity - are also accounted for by the 
solution of this equation in the radiation zone (Hanson & Fink 1979; Schmitz & Yu 
1986). 

Were it not for the considerable body of experimental evidence that shows the 
breakdown of the linearized theory and for the corresponding results of the nonlinear 
theory that agree with the data, we would have had no i-eason to  suspect the 
breakdown of the linearized theory in the transonic regime on the basis of only the 
earlier linear calculations. Attempts to bridge this logical gap in the development of 
the subject have already been made in the literature by looking either for singularities 
(Tam 1983; Myers & Farassat 1987) or for possible missing sources (Farassat & 
Martin 1983) in the linearized theory, but so far with no success. It is an 
acknowledged fact that  transonic flow is generically nonlinear and dnsteady even 
when produced by small-amplitude disturbances (see Moulden 1984). In other known 
transonic flows this nonlinearity manifests itself in the singular character of the 
perturbation problem : a solution of the linearized equations of the flow which is valid 
in either the subsonic or the supersonic regime becomes singular in the transonic limit 
(see Cole & Cook 1986, ch. 2). In  fact this is not a feature only of transonic flow. A 
singular perturbation problem arises also in other areas of fluid mechanics whenever 
the partial differential equation governing the flow is of the mixed type; a ship 
moving in shallow water, for instance, experiences unexpectedly strong forces when 
its speed equals the propagation speed of the surface gravity waves that i t  generates 
(Tuck 1966; Mei & Choi 1987). 
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The transonic flow in the bladc-fixed coordinate system of a helicopter rotor or a 
propeller is no exception. In  this paper we shall see that in rotor acoustics, too, the 
linearized theory predicts a physically unacceptable singularity in the transonic 
regime which signals its breakdown. The sound amplitude of a circularly moving 
point source which was considered in the earlier studies (Lilley et al. 1953; Lowson 
1965; Lowson & Jupe 1974) constitutes the Green’s function for the linearized 
version of the potential-flow equation of the mixed type studied by Caradonna & 
Isom (1976) and various other authors (Sankar & Prichard 1985; Strawn & 
Caradonna 1986). This same Green’s function is moreover the kernel appearing in the 
quasi-steady form of the Ffowcs Williams-Hawkings equation whose dimensionless 
part is normally referred to as the Doppler factor. The breakdown of the linearized 
theory in the transonic regime can be inferred from the structure of this Green’s 
function, which is a common feature of the various approaches to rotor acoustics, 
without any reference to the specific properties of the source densities that  appear in 
the Ffowcs Williams-Hawkings equation. We shall see, in fact, that  the impulsive 
noise in the far field, which is generated as a consequence of this breakdown and the 
subsequent formation of shocks in the near field, is also a basic phenomenon which 
can be understood quite simply in terms of the propagation of discontinuous Cauchy 
data (representing the near-field discontinuities in the distribution of the quadrupole 
sources) along the characteristic surfaces of the linear potential-flow equation. 

The paper begins with the derivation of the above Green’s function in both the 
time and the frequency domains and first discusses the distinction between the 
various forms of the Ffowcs Williams-Hawkings equation in the supersonic regime 
(52). The singularity structure of this equation appears to  undergo a change 
according to whether the sound amplitude of an extended moving source is regarded 
as the superposition of the sound amplitudes of the moving infinitesimal volume 
elements that constitute it, or as the sound amplitude of a stationary source whose 
constituent parts have the same densities as those of the actual source a t  the retarded 
times. The two descriptions are related by a transformation of integration variables 
in the Ffowcs Williams-Hawkings equation that has a singular Jacobian proportional 
to the Green’s function in question. Provided that the singularity of this Jacobian is 
handled properly, however, the breakdown of the linearized theory a t  the sonic 
cylinder follows from both descriptions (Appendix B). 

Section 3 is devoted to a detailed account of the singularity structure of the 
Green’s function in the supersonic regime. The caustic representing the envelope of 
the spherical wave fronts emanating from a circularly moving point source - which 
is a surface composed of two sheets that meet along a cusp curve (figure 2) - will bc 
compared and contrasted with the Mach cone of a rectilinearly moving point source, 
and its role in the calculation of the sound amplitude of an extended source, as the 
inverted bifurcation surface of a catastrophe, will be discussed. The source points on 
the bifurcation surface approach the observation point a t  the speed of sound and so 
constitute the loci of the singularities of the Green’s function; amongst these the 
points on the cusp curve, which at  the same time are approaching the observation 
point with zero acceleration, represent singularities that  are stronger than those 
appearing in the rectilinear case. In  the limit where the actual speed of the point 
source approaches the speed of sound, the whole bifurcation surface collapses onto its 
cusp curve and so gives rise to yet a higher-order singularity in the Green’s function. 

I n  54 we shall see that although all these singularities of the Green’s function are 
integrable and so, according to the linearized theory, the sound amplitude due to an 
extended source is itself everywhere finite, the radial component of the gradient of 
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the sound amplitude predicted by the Ffowcs Williams-Hawkings equation diverges 
as the observation point approaches the sonic cylinder from outside. This sudden and 
infinitely large change in the gradient of the sound amplitude that occurs as the radial 
position of the observation point (playing the role of the control parameter of a 
catastrophe) crosses the sonic cylinder, is a reflection of the fact that the strong 
sound fields generated by the supersonically moving volume elements of an extended 
source a t  their caustics are entirely confined to the supersonic region, and cannot 
propagate across the sonic cylinder to reach an observer who is located just inside 
this surface. Not only do the waves emitted in the supersonic region interfere 
constructively to form caustics but, because the equation governing the sound field 
of a curvilinearly moving source is of the mixed type, these caustics-which 
constitute the ray conoid of the governing equation ~ cannot penetrate the subsonic 
region where the equation is elliptic. 

The speed-of-sound catastrophe discussed in $ 4 arises from those contributions 
towards the values of the integrals in the Ffowcs Williams-Hawkings equation which 
are made by the source elements in the immediate vicinity of the singularities of the 
Green’s function. Unless we exclude the singularities in the integrands of the 
integrals in question from the domain of integration before differentiating these 
integrals, the relevant contributions which come from the boundaries of the excluded 
regions will not appear in the expression for the gradient of the sound amplitude. The 
physically observable results of a calculation are of course the same whether they are 
obtained by means of the theory of classical or of generalized functions; however, the 
order in which the two operations of differentiation and integration are performed 
may be interchanged, as is commonly done in the literature on rotor acoustics, only 
if the theory of generalized functions is applied consistently. This, and the fact that 
it is the near-field rather than the extensively studied far-field sound amplitude 
whose gradient diverges, explain why the earlier calculations in the literature fail to 
pinpoint the singularity which is responsible for the breakdown of the linearized 
theory. 

In  $5 we formulate the Cauchy problem for the homogeneous wave equation that 
is equivalent to the inhomogeneous problem discussed in $4, and show that the initial 
data for this problem have to be prescribed on a hypersurface in space-time which 
is null, i.e. characteristic, at points where it intersects the sonic cylinder. It is well 
known, however, that unless the data are also characteristic a t  points where the 
initial hypersurface becomes characteristic, the Cauchy problem cannot have a 
solution whose derivatives are regular (see Bleistein 1984). So, from this alternative 
point of view, the radial gradient of the solution discussed in 54 is singular because 
the Cauchy data required to duplicate the type of source in question are not 
characteristic a t  the sonic cylinder. The locus of the singularity is in the present case 
the envelope of those characteristics of the wave equation which are stationary in the 
rotating frame. 

In  $6 we specify the surface of parabolic degeneracy of the nonlinear potential-flow 
equation - on which this equation undergoes a change in type - and, on the basis of 
the location of this surface relative to that of the linear sonic cylinder, we explain 
why there is a breakdown in the linearized theory before the tip Mach number of a 
blade attains the value 1. Since the velocity pottential and the velocity field on any 
surface located just outside the surface of parabolic degeneracy uniquely specify the 
flow in the entire volume where the potential-flow equation is hyperbolic (Isom, 
Purcell & Strawn 1987; Schulten 1988), the acoustic radiation field is in the present 
case influenced by the flow in the near zone only to the same extent that the 
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conditions a t  the base of the supersonic region are influenced; these conditions 
constitute the Cauchy data for the quasi-steady potential equation in its domain of 
hyperbolicity and propagate along the bicharacteristics of this equation into the far 
zone. The acoustic discontinuities observed in the radiation field occur across the 
characteristic surfaces of the potential-flow equation (which are stationary in the 
blade-fixed rotating frame) and arise from the discontinuous Cauchy data a t  the base 
of the supersonic region. 

In $7 we briefly remark on the practical implications of the paper’s results and 
discuss the relationship of the singularity obtained here with those which have 
already been noted in the literature. These earlier singularities invariably arise from 
sources (such as those analysed in Appendix C) which are themselves singular. 

Most of the mathematical results of the present paper pertain to general properties 
of the retarded potential and have already been derived in Ardavan (1989) which will 
be referred to as Paper I. Here we give a descriptive account of the previous results 
and only present those calculations which either do not appear in Paper I or arise in 
the specific context of rotor acoustics. 

2. The theoretical framework of rotor acoustics 
The generation of sound by a rigid body in arbitrary motion through a fluid is 

governed by the following wave equation, known as the Ffowcs Williams-Hawkings 
equation (Ffowcs Williams & Hawkings 1969), which is an exact consequence of the 
conservation laws for mass and momentum: 

with 

where p and pi! are the deviations of the density and the stress tensor of the ambient 
fluid from their mean values po and pol&, the constant c is the mean value of the 
speed of sound, v is the local velocity with which the surface of the body encroaches 
on the fluid, and f (x, t )  = 0 defines the surface of the moving body with f < 0 inside 
and f > 0 outside the body; the tensor T,, = (po+p)uiuj+pi i -pc2Si j ,  in which u 
stands for the fluid velocity, is Lighthill’s stress tensor. I n  these expressions x is the 
position vector, t is time, O ( f ) ,  S( f )  and S,, are the Heaviside step function and the 
Dirac and the Kronecker delta functions, respectively, and the indices i and j 
designate Cartesian components of tensors and are to be summed over the values 1, 
2 , 3  when repeated. 

Equation ( 1 )  is a nonlinear equation because, even though the source term in this 
equation is known to within the zeroth order in the perturbation quantities, a 
knowledge of the exact value of s requires knowledge of the flow field and so of the 
solution itself. Nevertheless, it is possible to  use the following retarded Green’s 
function for the linear wave equation in unbounded space: 

G = 8 ( t p - t - R / c ) / R  
to rewrite (1) formally as 

p(xp,tP) = ~ ~ ~ d 3 x ~ m d t s ( x , t ) G ( x , ~ ; ~ P , t p ) .  4nc2 -m 

(3) 
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where (xp, tP) and (x, t )  denote the space time coordinates of the observation and the 
source points, respectively, R stands for ( x - x p l ,  and V extends over all space. 

When the body in question is a hovering blade with no forward velocity and so its 
motion consists of a rigid rotation about a fixed axis with a constant angular 
frequency w ,  only the quasi-steady sourecs of sound, whose strengths do not vary 
with time in the blade-fixed coordinates, are important (see Hawkings & Lowson 
1974), and we are concerned with flow variables which depcmd on the azimuthal angle 

and the time t as functions of the single variable v - w t .  Thus for rotor acoustics, 
in which p, f and the cylindrical components of u,  u and p ,  possess the syrnmctry 
a p t  + w a/+ = 0, the source term of ( 1 )  has the form 

where the z-axis of the cylindrical polar coordinates (r,cp, z )  is defined by the axis of 
rotation. (This can be seen by transforming thc partial derivatives with respect to 
Cartcsian coordinates that appear in (2) into covariant derivatives with respect to 
cylindrical coordinates, and noting that the process of differentiation does not 
introduce any dependence on the individual variables cp or t . )  

If we now insert (5) in (4), write R in its cylindrical form 

R = [ ( z  - zP)* + r2 + r; - 2rrp cos (cp -g+)lf ,  (6) 

and change the variables of integration from ( r , v , z , t )  to (r ,cp,z ,@),  the sound 
amplitude becomes 

6 ( v - @ - w t p + R w / c )  
R 

where 

and P extends over the support of the generalized function s ( r , @ ,  z) .  Performing the 
integration over cp in (8), we obtain 

in which 

is the Mach number with which the source point approaches the observation point, 
and cpj are those solutions of the functional equation cp-c$-wt,+Rw/c = 0 that lie 
within the interval of 271 over which the integral is evaluated. (gp is the cylindrical 
basis vector associated with the azimuthal angle cp.) 

The function Go is simply the sound amplitude due to a circularly moving point 
source and represents the Green’s function for the quasi-steady wave equation 
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which follows from ( 1 )  and the symmetry condition 

a a  
at + -+w-  = 0. 

We have here obtained Go from the four-dimensional Green’s function G of the wave 
equation by the method of descent (cf. Courant & Hilbert 1962, p. 205). However, Go 
can also be obtained directly by solving (1  l),  which applies to the lower-dimensional 
( r ,@, 2)-space, for the point source 

4KC2 

r 
s = -6(r - rp) 6(z - zp) &(I$-@,). 

(Note that the potential that  arises from a point source located a t  r p  = r ,  zp = z ,  
GP = @ in the (rp, z,,@,)-space is governed by the same equation as that which governs 
the potential due to a point source a t  r = rp, z = zp, @ = GP in the (r,z,@)-space.) 

Fourier-transforming the @ and z dependences of both sides of (11) for the point 
source (13) and requiring, in the standard way, that the solution to  the resulting 
ordinary differential equation should be regular at r = 0, should itself be continuous 
but have a discontinuous first derivative a t  r = rp, and should represent an outgoing 
wave at infinity, we find 

where 

m--m J o  

\?( K2C2 7 - < 1  K2C2 
1-- 

m2w2 ’ m2w2 
A =  

r , ( r , )  is the smaller (larger) of rp and r ,  Jm is the Bessel function of order m and HE) 
is the Hankel function of the first kind and the mth order. This series is identical to 
that  obtained by the Fourier expansion of the right-hand side of (9) (see Ardavan 
1984), and confirms that Go is in fact the retarded Green’s function for (11).  (The 
classical results of Gutin 1936 follow from the far-field version of (14) which appears 
in Ardavan 1981.) 

The differential operator appearing on the left-hand side of (11) is not - like that 
in the original Ffowcs Williams-Hawkings equation - hyperbolic, but of the mixed 
type: it is elliptic in the subsonic regime rw < c and hyperbolic in the supersonic 
regime rw > c. In  the same way that the symmetry a/at = 0 turns the wave equation 
into the lower-dimensional Poisson’s equation that is elliptic, so the symmetry 
a/at  + w a/+ = 0, which is with respect to time in r < c/w and with respect to space 
in r > c/w (Paper I, §6), turns the wave equation into an equation of the mixed type 
over the (r,z,@)-subspace of space-time. Our using the retarded potential for the 
derivation of (9) is analogous to  descending from the retarded potential to the 
solution (19) of Poisson’s equation and does not mean that the equation we have 
solved is the ordinary wave equation. The basic equation of linearized rotor 
acoustics, i.e. (11)  for a known s, is both of a different dimension and of a different 
type from the wave equation. 

This fact enables us to distinguish between the different forms of the Ffowcs 
Williams-Hawkings equation which are obtained from (4) by different choices of the 
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first integration variable (Ffowcs Williams & Hawkings 1969 ; Hawkings & Lowson 
1974; Farassat 1981). In  rotor acoustics there is only one of these forms which can 
also be obtained directly from ( 1  1)  : the form presented in (7)  that is obtained when 
the integration of the delta function in (4) affects a descent onto the ( r ,@, %)-space. 

If, as is customary, the delta function is integrated over t ,  then (4) and ( 5 )  yield the 
following expression for the sound amplitude : 

which is the Duhamel’s form of the retarded potential (Courant &, Hilbert 1962, 
p. 202). The integrand in this equation is, in contrast to that in (7) ,  non-singular for 
MR = 1 because the change of variables @ = q - w t p + R w / c ,  which would have to be 
made to transform i t  into the former integrand, has a singular Jacobian equal to the 
Doppler factor 11 -MRIP1. Since such a transformation is not permissible, unless we 
exclude the points at which the Jacobian is irregular or zero from the domain of 
integration, in going from (7) to (16) we have in effect shifted the singularity from the 
integrand onto the limits of the integral. This point is clearly illustrated by the 
following example which concerns a simpler rectilinearly moving source. 

It is well known (Tolman, Ehrenfest & Podolsky 1931 ; Dowling & Ffowcs Williams 
1983; Ardavan 1984; Cole & Cook 1986) that the sound amplitude at  a point inside 
an extended source which moves a t  the speed of sound in a straight line, diverges like 
In t p  when the duration t p  of the motion tends to infinity. Physically, the diverging 
contribution towards the sound amplitude comes, in this case, from the con- 
structively interfering waves that are produced by the source elements in the 
immediate vicinity of the observation point. Mathematically, however, the origins of 
the singularity appear in different guises depending on whether we use the rectilinear 
counterpart of (7)  -which is given in $11 of Ardavan (1984) - or that of (16). When 
calculated by means of the counterpart of (7), the divergence arises from the 
singularity structure of the corresponding Green’s function, whereas when calculated 
by means of the counterpart of (16), i t  arises from the unboundedness of the range 
of integration. Because for the source elements in the immediate vicinity of the 
observation point a short interval of observation time corresponds to an infinitely 
long interval of retarded time, the change of variables that transforms the former 
integral into the latter a t  the same time maps what in the comoving frame is a small 
volume just ahead of the observation point into a source whose extension in the 
direction of motion is unbounded. 

What distinguishes (7) from the other forms of the Ffowcs Williams-Hawkings 
equation is that in rotor acoustics the source density s is known as a function of the 
blade-fixed coordinates ( r , z ,@) .  To use the alternative form given in (16), for 
instance, we need to map the interval in @ over which s is non-zero into the 
corresponding support of s in q. The mapping from @ to q is multi-valued in the 
supersonic regime and, unless the zeros of its Jacobian are handled properly, does not 
result in an unambiguous integral which we can in fact differentiate without first 
evaluating. However, we shall see in 94 and Appendix B that, provided that we 
exclude the zeros of the Jacobian of this mapping from the range of integration prior 
to differentiating (16) and only proceed to the limit in which the volume of the 
excluded region shrinks to zero after having completed the calculation, then the 
singularity in the gradient of the sound amplitude a t  the sonic cylinder follows from 
(16), as well as from (7) on which the following analysis is based. (Note that to 
exclude a certain region from the domain of integration and to  proceed to the limit 
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in which tjhe volume of the excluded region shrinks to zero at  the end of the 
calculation is a mathematically permissible step in the evaluation of the derivative 
of any integral; in cases where there are no net contributions from the boundaries of 
the excluded region and so this step is spurious, the limiting operation would simply 
leave the outcome of the calculation unchanged.) 

Equations (7)  and (16) are obtained by projecting the past light cone of the 
observer - which constitutes the support of the integrand in (4) - onto the 3-surfaces 
9) = const. and @ = const. of the four-dimensional space ( r , q , z , @ ) ,  respectively. We 
may of course project the past light cone of the observer onto any hypersurface in 
space-time and so obtain a new form of the equation; the new integrand will be 
related to those in (7)  or (16) by a transformation of the integration variables. Thus, 
the Jacobian of this transformation, which depends on the angle between the original 
and the new hypersurfaces, can be made arbitrarily singular. However, unless the 
singularity of the new integrand is integrable, the values of the two integrals will not 
be the same, i.e. the transformation will not be permissible, no matter how care- 
fully the singularity of its Jacobian is handled. 

3. The supersonic regime of the theory 
Although the sound field of a circularly moving point source, i.e. the Green's 

function Go, enters most theoretical works on rotor acoustics a t  least implicitly, a 
study of its properties - comparable in detail to that  of the well-known properties of 
the sound field of a rectilinearly moving point source - has not yet appeared in the 
literature on this subject. (For earlier discussions of the problem see Hilton 1939; 
Lilley et al. 1953, and Lowson & Jupe 1974; for the mathematical details of the 
account given in this section see Paper I, $3.) Just  as the spherical field wavelets 
emanating from a rectilinearly moving supersonic point source form a Mach cone a t  
which the sound amplitude is infinite (figure l),  so the envelope of the corresponding 
wavelets from a circularly moving supersonic point source constitutes a caustic in the 
(r,,@,, 2,)-space at which the factor 11 -M,I in the denominator of (9) vanishes and 
the amplitude Go diverges. This caustic begins issuing from the point source in the 
form of a cone with the same opening angle, v = arcsin (rw/c)-' ,  as that of the Mach 
cone and, after joining a second sheet, eventually develops into a tube-like surface 
which spirals around the rotation axis (figure 2). The two sheets of the caustic are 
tangent to one another and so form a cusp where they meet. The resulting cusp is a 
distorted U-shaped curvc whose two segments run along the two sides of the 
spiralling tube-like surface from where the cone becomes a tube to infinity (see also 
the figures in Lilley et al. 1953; da Costa & Kahn 1985; and Paper I). 

When we superpose the sound amplitudes from the volume elements which 
constitute an extended source, as in the expression for p(rp,GP,zp) in (7),  the 
coordinates of the observation point (rP,@,,zp) are fixed and we are primarily 
concerned with the behaviour of the Green's function Go which appears in the 
integrand of this equation as a function of the coordinates ( r , @ ,  x )  of the source point. 
In  the ( r ,@,  2)-space, the singularity of Go occurs on a surface which is the mirror 
image of the caustic, i.e. the reflection of the caustic issuing from the fixed point ( r p ,  
@p, 2,) across the meridional plane passing through its conical apex (see the broken 
curve in figure 2). The corresponding surface in the rectilinear case is an inverted 
Mach cone : of the source points comprising the extended source shown in figure 1, 
the ones which producc an infinite sound amplitude at the observation point P are 
those which lie on the inverted Mach cone shown by the broken lines. While the 
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FIGURE 1. The irregular closed curve designates the boundary of an extended source which moves 
rectilinearly a t  a constant supersonic velocity u.  The envelope of the spherical wave fronts 
emanating from the source point S is the Mach cone associated with this particular volume element 
of the source and has the opening angle Y = arcsin (c /u) .  The inverted Mach cones, depicted by 
broken lines, represent the bifurcation surfaces of two arbitrary observation points P and P’. 

FIGURE 2. The counterpart of figure 1 for a rigidly rotating extended source. The larger of the two 
broken circles designates the orbit of the source point S and the smaller the sonic cylinder r = c / w .  
The envelope of the spherical wave fronts emanating from S and the bifurcation surface of the 
observation point P intersect the plane of the orbit along the curves that are shown, respectively. 
by the full and the broken lines. 

source points outside this cone - whose own Mach cones do not enclose P - make no 
contribution towards the sound field a t  the observation point P, the source points 
inside it make two contributions, each a t  a different. retarded time, towards the field 
a t  P. For source points on the inverted Mach cone the retarded times at  which the 
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two contributions are made coincide and the wavelets which arrive at P interfere 
constructively to  form a singularity. Thus, in the space of the source points, the 
singularities of the Green’s function - both for rectilinear and circular orbits - occur 
on an inverted caustic which, from the point of view of catastrophe t,heory, 
constitutes a bifurcation surface and so may be referred to as such. 

In  contrast to  the rectilinear case, in which two wave fronts pass the observer 
inside the caustic and none outside it, the sound field in the circular case is non-zero 
also outside the caustic : because a source point in circular motion stays in a limited 
region of space for all time, it is eventually overtaken by the expanding wave fronts 
which have emanated from it at earlier times. If we consider the caustic generated 
by the point source (13) which appears in the equation for the Green’s function and 
which has a non-zero density during only one revolution period, then, a t  any given 
observation time, three wave fronts propagating in different directions pass an 
observer located inside the caustic, and one wave front passes an observer outside 
i t . t  Each sheet of the caustic is formed by the constructive interference of only two of 
these waves; the third wave front always crosses the caustic at an angle and so 
represents that signal which is present on both sides of this surface. Correspondingly, 
the volume elements of the extended source shown in figure 2 which lie inside the 
bifurcation surface (depicted by the broken curves) influence the field a t  P a t  three 
different values of the retarded time and those outside it at one instant of an earlier 
time. The points on the bifurcation surface, for which the Doppler factor 11 -MRl-* 
diverges, are sources of the constructively interfering waves that not only arrive a t  
P simultaneously but also are emitted a t  the same (retarded) time. 

There is an infinitely sharp discontinuity in the value of the Green’s function Go 
across the bifurcation surface. If we approach this surface from outside, the 
expression for Go in (9) has only one term and this term remains finite in the limit, 
but if we approach it from inside, then (9) has three terms and the two of these which 
are absent in the former expression diverge on the bifurcation surface. The conical 
apex of the bifurcation surface is an exceptional point : all three values of the Doppler 
factor I1-MRI-’ appearing in (9) remain finite and distinct as we approach this 
surface from opposite sides of @ = @p along the circle r = rp, z = zp, but since R equals 
zero at this point, the discontinuity in Go is once again infinitely sharp. 

Along the cusp curve, where the two sheets of the bifurcation surface meet, the 
rays associated with the field wavelets further focus and give rise to a higher-order 
singularity : a t  every point of this curve, one of the factors 1 -MR in the denominator 
of (lo both vanishes and has a vanishing derivative with respect to  v, i.e. has a 
degenerate zero. This is a feature of the sound field from a circularly moving source 
which has no counterpart in that of a rectilinearly moving one. 

Contrary to what would be expected from the analogy with the Mach cone, the 
present caustic lies entirely outside the dividing cylinder between the subsonic and 
supersonic trajectories (the sonic cylinder) no matter how close to this cylinder the 
source point may be (see figure 2). The closer the position of the source point to  the 
sonic cylinder r = c / w ,  the smaller are the cross-sectional area of the caustic and the 
separation of the two segments of the U-shaped cusp curve. As the speed of the source 

t While the Green’s function Go is influenced by at most three values of the retarded time, the 
sound amplitude of a point source which executes many revolutions at a highly supersonic speed 
can be influenced by more than three waves tha t  are simultaneously received at the observation 
point. As illustrated by figure 2 of Paper I, in the highly supersonic regime where the ordinates $+ 
and 4- of the extrema of g(p) are widely separated, the equation g ( p )  = $ has solutions also for 
values of $ which lie outside a single interval of length 2n. 
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point approaches the speed of sound, the volume enclosed by the caustic shrinks to 
zero and the whole surface collapses onto the cusp curve, whose two segments 
coalesce and lie in the plane of the orbit in this limit. This is, of course, what also 
happens to the bifurcation surface -which is the mirror image of the caustic - as the 
radial position, rp, of the observation point approaches the sonic cylinder. The 
singularity of the Green’s function is worst: that is the focusing of the rays of sound 
is sharpest, when the observation point is located within the source on a volume 
element whose speed (in the rotating frame) approaches the speed of sound from 
above. Not only do two of the factors in the denominator of Go have degenerate zeros 
a t  the obscrvation point as this point is approached from @ < @p along the circle 
r = c /o ,  z = zp, but in fact the corresponding function M ,  ceases to be analytic 
altogether when rp = c / o  (see figure 6 of Paper I ) .  

The sound amplitude due to a circularly moving point source has a stronger 
singularity than that due to a rectilinearly moving one because it is governed by an 
equation ~ (11) with the source term (13) - which is of the mixed type. In addition 
to possessing a cusp curve, on which two zeros of the factor 1 -MR coalesce, and an 
apex a t  which no derivatives of M ,  exist, the present bifurcation surface collapses 
and so gives rise to further coalescence of the loci of various singularities of the 
Green’s function when the observation point coincides with the sonic cylinder and r p  
equals c / w .  That the bifurcation surface then disappears as rp assumes a value smaller 
than c / w ,  i.e. that the strong fields resulting from the constructive interference of the 
waves at the collapsed caustic are confined to the region outside the sonic cylinder 
and cannot propagate across this surface to reach an observer who is located just 
inside it, is a consequence of the fact that the sonic cylinder is the dividing surface 
between the domains of ellipticity and hyperbolicity of the relevant field equation. In  
fact, what in the four-dimensional ( r ,  p), z ,  t)-space appears as the bifurcation surface 
is from the point of view of the lower-dimensional ( r ,  @, 2)-space the ray conoid of (1 1) 
in its domain of hyperbolicity -which cannot, by definition, extend into the elliptic 
domain r < c / o  (Paper I, $6). 

From this latter point of view, we can regard the variable @ as a time coordinate 
in r >‘c/o and interpret (11) as the wave equation governing the generation and 
propagation of axisymmetric waves in a non-homogeneous medium for which the 
speed of sound varies like ( W ~ C - ~  -r-2)- i  with the distance r from the axis of symmetry. 
In such a hypothetical medium, not only does the bending of the rays result in their 
convergence (on the hyperboloid generated by the cusp curves of the ray conoids 
mentioned above), but the unbounded increase in the local speed of sound would also 
cause the coalescence of the different parts of the envelope of the rays which originate 
from the vicinity ofr  = c / o  (onto the plane of symmetry of the hyperboloid) and lead 
to a higher-order focusing of the rays and hence also of the wave energy. 

4. The speed-of-sound catastrophe 

therein) (4) is normally rewritten as 
In  the literature on rotor acoustics (see e.g. Farassat 1987 and the references 

axi af 1 -a 1d3xdtpii-S( af f )  d3xdtpOvi-S( f )  G , (17) 
aXPi ax, 
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with x ranging over V ,  and t over ( -  m, + a). The procedure which is used to obtain 
(17) from (4) involves the following steps: integration by parts to transfer the 
derivatives with respect to x and t from the source terms onto the Green’s function, 
use of the fact that G is a function of x p - x  and t,-t to equate these derivatives to 
the corresponding derivatives with respect to x p  and t ,  with a change in sign, and the 
interchanging of the orders of the differentiation with respect to (x , , t , )  and the 
integration over ( x , t ) .  From the point of view of the theory of classical functions, 
these mathematical manipulations are not permissible when the integral on the 
right-hand side of (4) has a singular integrand and does not converge uniformly. In 
particular, it is not permissible to transfer the derivatives from the source terms in 
(2) onto the Green’s function in (4) in the supersonic regime, because the required 
integration by parts results in an integrated term which is singular and a new 
integrand which has a non-integrable singularity. Only Hadamard’s finite parts 
(Courant & Hilbert 1962, p. 740) of the lengthy integrals thus obtained by Blackburn 
(1983), for instance, are relevant from the standpoint of the theory of generalized 
functions, and these finite parts are none other than the original integrals in which 
the derivatives operate on the source terms (see Whitham 1974, p. 221 ; Hoskins 
1979). 

So that any contributions there may be from the vicinities of the singularities of 
the integrand are not left out, in such cases one must exclude the singularities of the 
integrand from the domain of integration prior to these manipulations and proceed 
to the limit in which the volumes of the excluded regions shrink to zero only after 
having performed the integration. The singularity contributions to the value of the 
integral, if any, are of course the same whether obtained by this classical method or 
by means of the theory of generalized functions. To illustrate this point, let us 
consider Poisson’s equation 

and its familiar particular integral 

v2p = -4ns (18) 

where the notation is the same as that in (3) and (4). If we were asked to verify that 
this integral is indeed a solution to (18), we would not be allowed - according to the 
classical theory - t o  take the Laplacian operator under the integral sign before 
excluding the singularity of the integrand a t  R = 0 from V .  Once we had done this, 
either by changing the limits of integration or equivalently by inserting the step 
function 8(R -8) with 0 < 6 < 1 in the integrand, we would also obtain a contribution 
from the boundary of the excluded region. In  fact, as the following calculation shows, 
the value of V2pp consists, in this case, solely of the contribution which arises from 
the vicinity of the singularity of the integrand : 

V2pp = l i m ~ d 3 x s ( x ) V 2 p ~ ~ ]  E+O 

s’(R - 6) 
E+O R 

= -4RS(Xp). (22) 

The same result follows from the less restrictive theory of generalized functions if this 
theory is applied properly: it  is permissible to interchange the orders of the 

20 FLM 226 
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differentiation and the integration in the above calculation provided that Vi( 1/R) is 
regarded as a generalized function with the value -447cS(x-xxp) rather than a 
classical function with the value zero. 

While we do make use of the step function and the delta function for describing 
discontinuous functions and their derivatives, as we have done in (20) and (21), we 
shall nevertheless employ the classical method for differentiating the improper 
integrals that appear in the Ffowcs Williams-Hawkings equation. The calculation to 
be described in this section, which leads to the speed-of-sound catastrophe, is the 
counterpart of the following simpler calculation for a rectilinear motion. Figure 1 
shows a localized extended source, i.e. a portion of a source distribution with the 
density s(x, t )  given in (2), which moves along one of the coordinate axes, e.g. the z- 
axis, supersonically: s(x, t )  depends on z and t in the combination z-ut only, and 
u > c.  I n  this rectilinear case, the sound amplitude a t  the observation point P does not 
receive any contributions from the source elements outside the inverted Mach cone 
(depicted by broken lines) that issues from P, and consists only of the superposition 
of the contributions of those volume elements of the source which lie within the 
bifurcation surface. The contribution from each source point on the bifurcation 
surface is infinite and so the integrand of the integral that represents the 
superposition is singular. But, as is well known (see e.g. Dowling & Ffowcs Williams 
1983, p. 194), this singularity, which reflects the singularity in the density of a point 
source, is integrable; that  is to say, the sound amplitude due to a finite-duration 
extended source is finite. 

To calculate the gradient of the density perturbation that represents this sound 
amplitude, we can proceed in different ways. The simplest way, conceptually, is to 
integrate the product of the source density and the Green’s function over the support 
of this product, i.e. over the intersection of the volume of the source and that of the 
inverted Mach cone issuing from P ,  and then directly to differentiate the resulting 
expression for the sound amplitude. Alternatively. we can choose the intersection of 
the source and a slightly displaced cone, that is contained within the original one, as 
the domain of integration so that we may interchange the orders of differentiation 
and integration, and after having integrated the product of the source density and 
t’he gradient of the Green’s function and having calculated the contributions from the 
variable boundaries of the integration domain, retain only the part of the result that 
remains finite in the limit in which the two cones approach one another and coincide. 
A variant of this second method, which corresponds to Hadamard’s method of taking 
finite parts, is to use integration by parts (permissible as long as the singularities of 
the integrand are excluded) to transfer the gradient from the Green’s function onto 
the source density before performing the integration. The final answer is of course the 
same whichever method is used. However, the advantage of the methods in which the 
differentiation operator is taken under the integral sign - apart from the com- 
putational advantages - is that they enable us to single out any contributions which 
may arise from the vicinity of the singularity of the integrand. 

In the simpler case of a rectilinearly moving extended source (figure i ) ,  there are 
no contributions towards the value of the gradient of the sound amplitude from 
either the bifurcation surface in the supersonic regime, or from the point singularity 
a t  an interior observation point in the subsonic regime. 

Let us now consider the corresponding problem in rotor acoustics. (The 
mathematical details of the results discussed in the remainder of this section appear 
in $4 of Paper I .)  Figure 2 shows a similar localized extended source which rotates 
rigidly about the z-axis and for which the density s(x,t) ,  appearing in (a) ,  is a 
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function of v and t in the combination v - ot only ; the angular frequency of rotation, 
w ,  is such that the source intersects the sonic cylinder r = c / w  (depicted by the 
smaller circle in this figure) and so moves in parts subsonically and in parts 
supersonically. Although the sound amplitude at P receives contributions from all 
source elements in this case, the bifurcation surface (shown in broken lines) again 
divides the volume of the source into two parts with differing influences on this 
amplitude ; the source elements outside the bifurcation surface influence the sound 
amplitude measured a t  its conical apex at only a single instant of earlier time, while 
the source elements inside the surface influence this amplitude at three values of the 
retarded time. Amongst the source points on the bifurcation surface for which two 
of these retarded times are the same and the Doppler factor Il-MJl is infinite, 
there are those on the cusp curve which approach the observation point at the speed 
of sound with zero acceleration, and so influence the sound amplitude a t  three 
coincident values of the retarded time. Even the singularities associated with these 
source points, however, are integrable for all values of rp including rp = c / w  and, as 
in the rectilinear case, the sound amplitude from an extended source is itself finite. 

The two components applaz, and i3p/i?kj3p of the gradient of the sound amplitude, 
too, are like p everywhere finite. This is implied by the fact that the equations 
governing these two components, obtained by differentiating (1 l ) ,  have the same 
structure as the one governing p itself. To infer this result directly from (7) ,  
Hadamard’s finite parts of the differentiated integrals must be adopted: we must 
begin by enclosing various parts of the bifurcation surface inside shells whose 
volumes are excluded from p, then take the derivatives under the integral sign and 
use integration by parts and the fact that  Go is a function of z-zp and @-@p to 
transfer the derivatives onto the source terms, and finally note that when the 
volumes of the excluded shells shrink to zero, the resulting expressions for ap/azP and 
i3p/2u$p differ from the expression for p only in that s in them is replaced by as/& or 
as/$. 

‘The component ap/arP of he gradient of the sound amplitude, on the other hand, 
behaves differently. In the case of wave equation (l) ,  i t  is always possible to work 
with Cartesian coordinates so that the structure of the d’ Alembertian operator is not 
changed by differentiation, but in rotor acoustics the change that occurs when the 
operator on the left-hand side of (1 1) is differentiated with respect to r cannot be 
avoided by a different choice of coordinates, and is an indication of the fact that 
aplar, is not related to the source term as/& via the familiar Green’s function Go. 
When we insert a step function H in the integrand of (7) to exclude the bifurcation 
surface from the domain of integration and then differentiate this equation with 
respect to r p  by the method outlined above, we find that, because the variable rp 
enters Go not only in the combination r - r p  but also on its pwn, the operatqr a/&, 
which acts on Go H cannot be replaced with -a/& and so wholly transferred onto the 
source term. Once we have integrated the terms which are common to a(GoH)/arp 
and -a(Go H ) / a r  by parts, we are left with the remaining terms of a(Go H)/ar ,  which, 
in the limit where H = 1, play the role of a new Green’s function. 

To decide whether the higher-order singularity of this new Green’s function which 
appears in the expression for ap/arP is integrable, let us for the moment set the source 
density s equal to a constant. The integration over @ can then be performed explicitly 
and we find that certain terms in the integrated expression which arise from the 
boundaries of the excluded region are still singular after this first integration : in the 
limit where the volume of the excluded region reduces to zero, the contribution of the 
source points which approach the cusp curve from inside the bifurcation surface 

20-2 
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diverges. However, when the remaining integrations are performed over a small area 
containing the apex r = r p ,  z = zp, of the projection of the bifurcation surface onto 
the (r,z)-plane, the end result for the value of the volume integral that represents 
i3p/i3rp turns out to be finite and is proportional to ( rp-c/o)- i  for 0 < ( r , w / c ) -  1 < 
1. Because the first term in (2) for s, i.e. the quadrupolc term which represents the 
density of a volume distribution, does in act assume a constant value in a sufficiently 
small neighbourhood of the observation point r = rp, z = zp, r$ = r$p, this result 
implies that the gradient of the sound amplitude which arises from a quadrupole 
source is finite everywhere exce t at the sonic cylinder where its radial component, 
i3ppli3rP, diverges like (rp-c/w)-x as r ,w/c+ 1 + . 

The above catastrophe, i.e. the sudden and infinitely large change in the value of 
ap/arp that occurs as the control parameter r p w / c  crosses the critical value 1, arises 
from the contribution of those source points which lie on the cusp curve of the 
bifurcation surface issuing from the observation point, in the limit where the two 
segments of this U-shaped curve approach one another and coalesce. Since the curve 
resulting from the collapse of the bifurcation surface lies in the plane z = zp, the 
quantity applar, diverges even more strongly when the source is distributed over the 
equatorial plane and the observation point coincides with the intersection of this 
plane and the sonic cylinder. If the loading and the thickness noise terms, i.e. the 
second and the third terms in (2), which are given by integrals over the blade surface 
f ( r ,  z ,  @) = 0, are replaced, as is customary (cf. Farassat 1986), with integrals over a 
plane representing the mean surface of the rotor blade, then the value of aplar, on 
this plane diverges like (rp-c/w)-% as r p w / c +  1 + (see Appendix A). 

In  this section, our analysis has been based on the particular form of the Ffowcs 
Williams-Hawkings equation given in (7). But as was pointed out in 92, the 
singularity under discussion also follows from the Duhamel's form of the retarded 
potential, (16). The corresponding calculation, outlined in Appendix B, shows that 
the divergent contributions to the value of ap/i3rp, though ostensibly arising from the 
integrand in the case of (7) and from the limits of integration in the case of (16), are 
in both cases caused by the discontinuous variation of the Green's function Go,  or 
equivalently the Jacobian dv/d@, across the bifurcation surface, and that they have 
precisely the same asymptotic value. 

P 

5. The equivalent Cauchy problem for the homogeneous wave equation 
Just as the Cauchy data for the solution of the homogeneous wave equation can 

be replaced by suitably chosen impulsive source terms (Morse & Feshbach 1953, p. 
837)> so the solution of the inhomogeneous equat,ion ( 1 )  discussed here can be 
expressed as that of an equivalent Cauchy problem for the homogeneous wave 
equation. To formulate this equivalent problem: we may begin by writing the source 
term s of ( 1 )  as a superposition of impulses : 

i.e. by invoking Duhamel's principle (see Courant & Hilbert 1962, p. 552). By virtue 
of the linearity of the wave equation, it is then sufficient to discuss the Cauchy 
problem for a source term of the form s(r ,  z,@,) S(@-@,) only. (For a discussion of the 
inhomogeneous problem for such two-dimensional rotating sources that lie in a 
meridional plane, see Appendix C.) 
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Since the Cauchy data required to duplicate such a source have to be prescribed 
on a curved hypersurface in the four-dimensional space-time, it is for the purposes 
of the present section more convenient to introduce the Minkowski metric 

- 1 0 0 0  

7/‘”=(!  0 1 0  O 0 )  

0 0 1  

and rewrite the equations for the wave amplitude (equation (1)) and the Green’s 
function G (equation (3)) in the forms 

and 

where x“ = (ct, x, y, z )  are the space-time coordinates, the Greek indices p,  v, etc. take 
on the values 0, 1, 2 and 3, and repeated indices are to be summed over. If we now 
multiply (25) and (26) by G and p,  respectively, subtract the two equations and 
integrate the resulting expression over the space-time domain D with the boundary 
aD, we obtain the following generalization of equation (7.3.5) of Morse & Feshbach 
(1953) : 

the 4-vector ds” in this equation represents the volume element on the (generally 
curved) 3-surface aD. 

The solution to the inhomogeneous wave equation for a source density of the form 
s(r ,  x,@,) S(@-@,) in unbounded space-time is given by the first term in (27) : 

Here, the integration extends over the hypersurface @ = Go whose parametric 
equation in terms of the interior coordinates ( r ,  p, z )  can be written as 

x = rcosp, y = rsinv, x = z ,  t = ( ~ ) - @ , ) / w .  (29) 

Since in this case aD lies a t  infinity, the second term in (27) makes no contribution. 
The solutions to the homogeneous wave equation, on the other hand, consist entirely 
of the boundary terms in (27). So, to obtain the same result (equation (28)) by solving 
the homogeneous wave equation, i.e. from the second term in (27), we must prescribe 
the Cauchy data on $I = Go and close the boundary aD by means of a semi-spherical 
hypersurface of infinite radius in rj5 < 0 (which corresponds to t > 0). 

The volume element on the 3-surface @ = Go can be calculated from (29) as follows : 

where 
C 

rw 
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which is proportional to  t!@/axp, represents the normal to the hypersurface, and ePVrA 
is the Levi-Civita tensor. Substituting (30)in the second term of (27) and comparing 
the resulting intcgrand with that in (28), we can now see that the required Cauchy 
data are 

PI,-=$, = 0, (32) 

and (33) 

(The outward normal to  8D is -nu). On c$ = @, we have dp, = wdt and so (32), in 
conjunction with the fact that  i3pplar and ap/dz are derivatives along directions 
interior to  @ = @,, implies that 

Equation (33), therefore, assumes the form 

once (31) is used to express nfi = ~ ~ ” n , ,  explicitly. 

indicated by 
The reason for the divergence of the right-hand side of (35) at  r = c / w  is that, as 

npnI = c 2 / ( r w ) 2 - 1 ,  (36) 

the 4-vector np, which is time-like in r > c / w ,  undergoes a change in type across the 
sonic cylinder and becomes space-like in r < c / w .  I n  other words, the vector normal 
to the 3-surface @ =Go becomes null, and so coincident with the normal to a 
characteristic hypersurface, a t  all points on the 2-surface r = c/w.  

To solve the homogeneous wave equation with the above Cauchy data, it is more 
convenient to adopt the independent variables ( r ,  p,, x ,  @) so that the data are given 
on a coordinate surface. In  these coordinates, the wave equation and the data 
(32)-( 35) have the forms 

and the derivatives with respect to r ,  z and p, are all along directions interior to the 
hypersurface @ = Go. The exterior derivatives a2p/i3$21+,o, a3p/C$31,+60, etc., which are 
needed for evolving the solution away from this hypersurface, can now be determined 
by evaluating (37) and its successive derivatives a t  @ = c&,. Because ap/t!@16+o is 
independent of y, the insertion of (38) in (37) yields a2p/t3$21b+, = 0. When this and 
the initial data are inserted in the derivative of (37) with respect to @, however, we 
obtain a value for the next coefficient in the Taylor expansion of p, 
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which diverges a t  r = c/w for an arbitrary source density s(r,z,@,). I n  fact the 
remaining derivatives, amp/&$mI++o for m > 3, are all divergent at r = c / w  and the 
higher the value of m, the higher is the order of their singularities. 

The coefficients in the Taylor expansion of the solution to the above Cauchy 
problem diverge a t  the sonic cylinder simply because the Cauchy data are prescribed 
on a hypersurface which is locally characteristic a t  all points of the 2-surface r = c / w  : 
according to (36), the 3-surface @ = G o  is space-like in r > c / w ,  is null, i.e. 
characteristic, a t  r = c / w ,  and is time-like in r < c/o.  It is well known that unless the 
data are also characteristic at points where the initial hypersurface becomes 
characteristic, the Cauchy problem cannot have a solution whose derivatives are 
regular; for an illustrative example of this type of singularity, see the discussion in 
Chapter 1 of Bleistein (1984). In  the present case, the constraint implied by (39) and 
the corresponding expressions for the higher-order derivatives i3mp/&$ml,+G, is that 
unless the function S ( T ,  z,  Go)  appearing in the Cauchy data (38) approaches zero faster 
than all powers of r - c / w ,  some of the coefficients in the Taylor expansion of p 
diverge a t  r = c /w .  Indeed, the singularity of the original inhomogeneous problem 
discussed in the preceding section is removed if the source density s ( r ,  z ,  I$) vanishes 
exponentially a t  the sonic cylinder (cf. Paper I, 95). However, because the data are 
still prescribed on a hypersurface which is in parts time-like, the Cauchy problem in 
question remains ill-posed even after such a modification (see Bleistein 1984, p. 148; 
and Morse & Feshbach 1953, p. 683). 

Although appearing in somewhat different guises, the singularities of the original 
inhomogeneous problem discussed in 94 and those of the equivalent homogeneous 
problem discussed here have exactly the same origins. The fact that  the initial 
hypersurface associated with the homogeneous problem becomes characteristic is 
intimately related to  the fact that the solution to  both problems possesses the 
following symmetry earlier expressed in (12) : 

where 

aP 
all;. 

UF- = 0, 

rw 
C 

As can be seen from the invariant quantity 

up f l  = - 1 + r2w2/c2, 

the 4-vector up, like the normal to the initial hypersurface M ,  is time-like in r > c / w  
and space-like in r < c / w .  That the symmetry expressed by the directional derivative 
(40) is with respect to  time in r > c / w  and with respect t o  space in r < c / w ,  on the 
other hand, is the reason why the wave equation subject to this symmetry, i.e. (ll),  
is hyperbolic in r > c / w  and elliptic in r < c / w  (see also $6 of Paper I). It is thus 
immaterial whether we regard the singularity as arising from the ill-posed character 
of the initial data or from the mixed nature of the governing field equation ; these are 
two aspects of a single feature. 

The singularity in question does in fact occur on the characteristics of the wave 
equation as expected. We already know from the solution to the inhomogeneous 
problem that, on the one hand, this singularity stems from the singularity of the 
Green’s function Go, and that, on the other hand, the bifurcation surface on which 
Go is singular is a solution of the eikonal equation and so a characteristic manifold 
of the wave equation (Paper I, $6). Since the initial data (38) lead to a solution which 
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possesses the symmetry (12), the characteristics responsible for the propagation of 
the singularity are only those which are stationary in the rotating frame. We shall 
see below that a t  any given time the points on the sonic cylinder each belong to a 
specific member of the set of characteristic 2-surfaces whose motion is entirely 
azimuthal. Such characteristics only exist in r > c / w ,  so that the sonic cylinder in 
fact constitutes the locus of the edges of regression, i.e. the envelope, of the set of 
azimuthally propagating wave fronts. 

The characteristics of the wave equation that remain stationary in the rotating 
frame are those hypersurfaces, $(ct ,  x, y, z )  = const., which in addition to having null 
normals, 

possess the symmetry expressed in (12) and (40). The eikonal equation (43) for a 
function $ that satisfies condition (12) has the following form in cylindrical polar 
coordinates : 

where 1 : ~  rw/c  and i s  zw/c.  The integration of this differential equation is 
considerably simplified by a Legendre transformation (Courant & Hilbert 1962). Its  
general solution, as can be verified by direct substitution, is given by 

in which f ( & , C 3 )  is an arbitrary function of the two variables t2 and t3. The 
intermediary variables (El, &, 6,) are in fact the components of the vector normal to 
the characteristic surface : 5, = a$/a?, 5, = a+/a; and 6, = a$/C!t$. 

The fact that all terms in (44) are positive when 1: < 1 already implies that the 
above solutions exist only outside the sonic cylinder. These azimuthally propagating 
characteristics, which are stationary 3-surfaces in the 4-dimensional ($, 1:) i , @)-space, 
possess an envelope consisting of the 2-surface 1: = 1 ,  since the Jacobian 

vanishes a t  1: = 1 where, according to (46), we have t1 = 5, = 0. For any given f (&, 
t3), the associated characteristic has an edge of regression along the curve 1: = 1, i = 
aj/a&l,,o, 4 = aj/aE31t8-o, $ = ( -  f + t3 aj /a [3 )6z -o .  The projection of this curve onto 
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the subspace $ = const. is the point at which the surface $(r,z,$) = const. touches 
the sonic cylinder. Since both a$/ai? and a@/a,i vanish a t  this point, the normal to  the 
2-surface $( r ,  x ,  c$J = const. is, as illustrated by the following particular solution 

II. =$-(~2-1)f+arcsin(l-i?-~)) = 0, (50) 

purely azimuthal a t  the sonic cylinder. That is to  say, each characteristic $ = const. 
has a cusp a t  the point (or points) where i t  meets the sonic cylinder. 

The caustic shown in figure 2, which constitutes the locus of the singularities in the 
sound amplitude of a point source, is a specific member of the set of azimuthally 
propagating characteristics described here and is given by (45)-(48) for a particular 
f(&,t2) (see Paper I, 96). The sonic cylinder, on which the gradient of the sound 
amplitude from an extended source and the solution to the present Cauchy problem 
are singular, is not itself a characteristic, but constitutes the envelope of all 
azimuthally propagating characteristics. The occurrence of a singularity on the 
envelope or the edge of regression of characteristics, across which an equation can 
change from hyperbolic to elliptic is in fact frequently encountered in solutions to  ill- 
posed problems for equations of the mixed type (see Bitsadze 1964). 

6. The nonlinear regime of the theory 
Within the framework of the linearized theory, the source term s is known up to 

the first order in the  perturbation quantities and the expression given in (7) for p 
represents the solution to  (11). Since the radial component applar, of the sound 
amplitude is a measurable quantity that cannot assume an infinite value, its 
singularity is a physically unacceptable prediction of (1  1) which must be interpreted 
as signifying the breakdown of the linearized theory. Clearly, here is yet another 
example of a transonic flow in which the linearized theory breaks down even under 
circumstances where the perturbations are small (cf. Moulden 1984). 

In the nonlinear regime, where the source term s is not known, (7) is an integral 
representation of the differential equation (1 1) .  However, the insertion of (7) into (1 1)  
would not result in an identity unless all second derivatives of p exist. The infinite 
discontinuity in the value of appli3rP a t  the sonic cylinder, which occurs for any quasi- 
steady source term of the form s = s(r, z ,@) whether known or not, implies that  within 
the transonic domain of the flow, (7)  and (11) are not in fact equivalent. Any 
description of the flow in this regime must be based on some version of the original 
differential equation. 

Rather than going back to ( l ) ,  let us follow the common practice in the literature 
(cf. Caradonna & Isom 1976) and assume that the flow is irrotational, so that we can 
describe it by means of a single partial differential equation of the second order. In  
the case of a potential Aow, where u = V$, Bernoulli's equation and the equation of 
continuity jointly yield 

To express the speed of sound in this equation as a function of the velocity potential 
$, we need to introduce an equation of state for the fluid; with an adiabatic equation 
of state, Bernoulli's equation becomes 

c2 = C",((y-l)  -+zI $12 , (Z l V  ) 
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where y is the ratio of the specific heats a t  constant pressure and constant volume, 
and c, is the speed of sound in the undisturbed medium. Equations (51) and (52), for 
a quasi-steady potential that satisfies the symmetry condition (12), have the forms 

and c2 = cZ,+ (yf 1 )  (rwu,-+uz), (54) 

where u, = a$/ar, up = r-l a#/?@ and u, = a$/& are the cylindrical components of u, 
and u = IuI . As we would expect, in the linear regime u Q c, the second-order operator 
in (53) reduces to that in (11) .  

The above quasi-linear partial differential equation for $ is elliptic or hyperbolic 
according to whether the following determinant - whose elements consist of the 
coefficients of the second-order derivatives in this equation - is positive or negative 
(see Courant & Hilbert 1962, p. 181): 

c4 
= -- r2 [(up - r W ) 2 +  u," + u," - 21 ,  (55) 

i.e. whether the fluid velocity relative to the blade-fixed coordinates is subsonic or 
supersonic. On the surface of parabolic degeneracy, where (53) undergoes a change 
in type, the right-hand side of (55) is zero and so 

(see (54) and (55)). This surface coincides with the sonic cylinder in the linear regime 
but, in general, has an irregular shape which is determined by the local values of u 
and c rather than by c, alone. In fact, an important nonlinear effect is the departure 
of the speed of sound c from its undisturbed value c, and, as (56) shows, we have 
c < c, at any points of the surface of parabolic degeneracy which lie inside the sonic 
cylinder r = c,/w. 

This provides an explanation for the experimental results of Schmitz & Yu (1981) 
according to which there is a breakdown in the linearized theory before the tip Mach 
number rw /c ,  of a helicopter blade attains the value 1.  The main effect of the 
rotational motion of a thin hovering blade on the flow around it is to impose the 
quasi-static constraint (12). However, no quasi-static flows exist for which the 
amplitudes of the perturbations in the flow variables remain small at the sonic 
cylinder. On the one hand, the imposition of the quasi-static constraint in the 
vicinity of the sonic cylinder is accompanied by the generation of large-amplitude 
perturbations, and on the other hand the position of the surface of parabolic 
degeneracy is changed in the presence of such perturbations. As a result, the fluid 
velocity relative to the blade-fixed coordinates (whose zeroth-order value is r w )  can 
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cqual the local speed of sound c( < c,) a t  points where r < c,/w. Thus the nonlinear 
effects come into play when the tip of the blade pierces the surface of parabolic 
degeneracy rather than when it pierces the sonic cylinder (as suggested by Schmitz 
& Yu 1986). 

Numerical calculations based on (53) confirm that, as suggested by the infinitely 
large gradient of the sound amplitude predicted by the linearized theory, the flow in 
the transonic region includes shock discontinuities (Caradonna & Isom 1976). Far 
from thc transonic region, nonlinear effects are unimportant and the flow is once 
again governed by (11). One can use the near-zone flow field found from the 
numerical solution of (53) to  specify the source term s in (11) and subsequently solve 
this cyuation in the radiation zone (see Hanson & Fink 1979). However, a more 
appropriate solution to  (11) is in this case provided by a Kirchhoff integral over a 
surface close to the inner boundary of the domain of hyperbolicity of the flow (cf. 
Isom et al. 1987 ; Schulten 1988). One can use the computed flow field in the transonic 
region to specify the initial data on a surface just outside the surface of parabolic 
degeneracy, and subsequently solve the Cauchy boundary value problem for (1 1). (Of 
course, the Kirchhoff integral solves a Cauchy problem for which the data are set on 
a time-like surface, and as a result, the dependence of the solution on the initial data 
might not be continuous.) 

The Kirchhoff integral formulation is more appropriate because the acoustic field 
is in the present case influenced by the flow in the near zone only to the same extent 
that the conditions at the base of the hyperbolic domain are influenced. From the 
point of view of an observer in the lower dimensional (r,@,z)-space of ( l l ) ,  who 
cannot detect waves that do not depend ong, and t in the combination g,-ot, the only 
signals reaching infinity are those which originate a t  points outside the surface of 
parabolic degeneracy (see $6 of Paper I). The domain of dependence of the entire 
radiation field, therefore, consists of the outer boundary of the transonic region. The 
shock fronts which cross this boundary correspond to discontinuities in the Cauchy 
initial data. It is well known, on the other hand, that the discontinuities in the data 
propagate along the characteristic surfaces of the governing hyperbolic equation. 
The bicharacteristic curves or rays associated with (11) (given in equation (90) of 
Paper I) that originate a t  points where the initial data is discontinuous form a 
characteristic surface extending to infinity on which the flow itself is discontinuous. 
The characteristic surfaces of (11) constituting the loci of the flow discontinuities are 
stationary in the ( r , @ ,  2)-space, but they rotate around the z-axis with the angular 
velocity w in the (r,g,, z, +space (see equations (45)-(48)). 

The experimentally observed phenomenon which Schmitz & Yu (1986) call the 
delocalization of shock discontinuities is in fact the effect described above : the near- 
field shocks that are formed concurrently with the breakdown of the linearized 
theory in the transonic region act as discontinuities in the Cauchy data on a surface 
close to  the inner boundary of the domain of hyperbolicity of the flow and so 
propagate along the characteristic surfaces of the governing field equation and 
appear as acoustic shocks in the far-field radiation zone. Thus the sources of the 
detected impulsive noise are the transonic shock discontinuities near the sonic 
cylinder ; acoustic waveforms develop discontinuities only when the tip Mach 
number of the rotor tends sufficiently close to unity for these near-field shocks to 
form and to  intersect the surface of parabolic degeneracy. 

From the standpoint of the Ffowcs Williams-Hawkings equation, these sources 
belong to the quadrupole term in (2). Loci of the discontinuities of the monopole and 
the dipole terms, which consist of the intersections of the near-field shock fronts with 
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the blade surface, are curves which in general cross the surface of parabolic 
degeneracy a t  isolated points. Such pointwise discontinuities in the Cauchy initial 
data propagate into the hyperbolic region, and so into the far zone, along isolated 
rays. On the other hand, the discontinuity in the quadrupole term which consists of 
an entire shock front crosses the domain of dependence of the hyperbolic region (e.g. 
a surface just outside the surface of parabolic degeneracy) along a curve and so 
propagates into the supersonic region along a characteristic surface. It is for this 
reason that theory and experiment are brought into agreement once the 
discontinuous quadrupole sources are included in the calculation of the acoustic 
radiation field (Hanson & Fink 1979; Schmitz & Yu 1986). 

7. Concluding remarks 
Mathematically, the results discussed in $0 2 4  derive from the assumption central 

to  rotor acoustics that the flow in the blade-fixed coordinate frame is steady and 
hence the equation governing this flow is of the mixed type. The agreement between 
theory and experiment substantiates this assumption and confirms that the long- 
term rotational motion of a hovering blade does in fact produce a flow which when 
viewed in the blade-fixed frame is essentially time-independent. But if it were 
possible to decouple the motion of the blade from the symmetry of the flow, i.e. to 
prevent the rotational motion of the blade from imposing the quasi-static condition 
(12) on the surrounding flow, then there would be neither a transonic region with 
shock discontinuities in the near zone, nor any acoustic discontinuities with their 
associated impulsive noise in the far zone. 

Of the three source terms in the Ffowcs Williams-Hawkings equation, it is only the 
monopole term which is determined by the shape and the velocity of the blade itself 
and so is quasi-static independently of the flow surrounding the blade ; the other two 
source terms are quasi-static only when the ambient flow is quasi-static (i.e. is steady 
in the rotating frame). Because the source term responsible for impulsive noise is the 
quadrupole term which is determined by the flow surrounding the tip of the blade, 
it would in principle be possible to remove the impulsive noise by destroying the 
quasi-static symmetry of the flow in the transonic region. The characteristics of the 
noise from a rotating propeller would be altered radically if the propeller could be 
designed in such a way that the flow in the vicinity of its tip were unsteady and 
turbulent. 

The singularities in the sound field which arise from singularities of sources of 
sound - such as those arising from the edges of a blade that are considered by Tam 
(1983), Chapman (1988), Amiet (1988) and De Bernardis & Farassat (1989) - have no 
bearing on the breakdown of the linearized theory. When a discontinuous source of 
this kind is, as in $ 5 ,  replaced by equivalent initial data for the homogeneous wave 
equation, we face a Cauchy problem for which either the data, or the derivatives of 
the data, are singular. It is well known, on the other hand, that the singularities of 
the Cauchy data propagate along characteristics and so give rise to singular 
solutions. In fact, in cases where characteristics focus and form caustics, the solutions 
acquire singularities which are of an even higher order than those in the initial data 
(see Courant & Hilbert 1962, p. 673). The logarithmic singularities in the sound 
amplitude, which were found in these earlier works, merely reflect the delta-function 
singularities in the densities of one-dimensional line sources, since the leading and 
trailing edges of an airfoil effectively act as line sources (De Bernardis & Farassat 
1989). 
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We have analysed one-dimensional line sources of sound, for which s can be 
expressed as so 6[r - r (A)]  6[z- z ( h ) ]  6[$ -@(A)] in terms of a curve parameter h and a 
constant so, in Appendix C and have shown that when these have a supersonic 
rotational motion in a direction perpendicular to their own elongation, they give rise 
to a sound amplitude which is logarithmically divergent on certain surfaces in space. 
For any given observation point x, on such a surface, the divergent contribution 
towards the sound amplitude arises from the element of the line source, x, which both 
lies on the bifurcation surface associated with x,, i.e. approaches xp with the speed 
of sound, and radiates in a direction x - xp perpendicular to the unit vector f that is 
tangent to the line source at x, i.e. satisfies the critical condition i.Vlx-x,l = 0. The 
shape of the singular surface depends on the shape of the line source. In Appendix 
C, we have also explicitly specified the singular surfaces associated with straight-line 
sources which lie along the radial direction in the plane of rotation, or are parallel to 
the axis of rotation, and have demonstrated that the singularity of the sound 
amplitude is in fact of a different order (from logarithmic) at any points on these 
surfaces that lie on the intersection of the source with the sonic cylinder. 

To see that these particular singularities are removed when the source is extended, 
i.e. when the source density is singularity-free, it is only necessary to consider a 
source distribution for which the density is less singular : the sound amplitude due to 
a two-dimensional rotating source, which lies in either the meridional ($ = const.) 
or the equatorial ( z  = const.) plane, is itself finite everywhere (Appendix C). As 
already noted by Ffowcs Williams & Hawkings (1969) in their discussion of shell 
sources, the integrand in (7) becomes highly singular also when a two-dimensional 
source moves towards the observer a t  the wave speed with its normal parallel to the 
radiation direction, for this condition corresponds to that of tangency of the 
space-time trajectory of the source with the past light cone of the observer. 
However, this singularity of the Green’s function is integrable in the planar two- 
dimensional case and only manifests itself in a divergent value for a measurable 
quantity when the gradient of the sound amplitude is considered at an observation 
point which is in addition located on the source. In other words, there is a hierarchy 
of singularities: the sound amplitude due to a point source has an algebraic 
singularity on the caustic, that due to a line source has a logarithmic singularity on 
a surface determined by its shape, and that due to a planar shell source is itself finite 
but has an algebraically singular gradient at  the sonic cylinder. Only this last 
singularity persists in the sound field of an extended source -with, of course, a 
reduced strength (see Appendix A). 

Because physically realizable sources, such as airfoils and rotor blades, never have 
singular densities, the singularities so far discussed in the literature are removed once 
these sources are modelled more realistically. The singularity which appears in the 
sound field of an extended source, on the other hand, arises not from singular but 
from ill-posed Cauchy data: it is a consequence merely of the assumption that the 
flow is steady in the rotating frame, and hence of the fact that the equivalent initial 
data have to be prescribed on a space-time hypersurface which is locally 
characteristic a t  the sonic cylinder (see $5).  There is no way of removing this latter 
singularity other than by either abandoning the quasi-static constraint (12) or by 
reformulating the governing equation (1).  

Given the quasi-static constraint (12), the singularity discussed in $4 signifies the 
breakdown of the linearized theory because it is predicted by the solution of (1 1) for 
well-behaved source densities and for smooth initial and boundary conditions ; that 
is, because it cannot be attributed to anything other than the inapplicability of the 
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governing field equation. Indeed, had it not been for the fact that (1 1) is of the mixed 
type, its breakdown could not have been signalled by the prediction of a singularity : 
the solutions of a linear hyperbolic partial differential equation, such as the acoustic 
wave equation in the ( r , q ,  z ,  t)-space, for well-behaved source densities and for 
smooth initial data on space-like hypersurfaces are also smooth themselves. Here, as 
in all other transonic and transcritical flows (Tuck 1966; Moulden 1984; Cole & Cook 
1986), the prediction of a singularity by the linearized theory and the mixed nature 
of the governing equation are intimately linked (see $5) .  

I thank A. M. Cargill, C. J. Chapman, F. Farassat and J. E. Ffowcs Williams for 
their stimulating and helpful oomments. 

Appendix A 
I n  this appendix we apply the method developed in $5  of Paper I to show that the 

gradient of the sound amplitude for r", + 1 + diverges like (4;- 1)-) in cases - such as 
those of thickness and loading noise- where the source is distributed over the 
equatorial plane z = zp. Thc notation is the same as that in Paper I and the equation 
numbers belonging to Paper I carry the prefix I .  

For an observation point which is located on the source plane, i.e. for zp = z or 
5 = 0, (I 12) and (I 21) yield 

k, = i</i>, 7 = i:-1, ,g = i:(i-<*), 

where P,(r",) is the smaller (larger) of rpw/c  and r w / c .  So, from (I 71) and (I 72) we 
have 

when both i, - 1 and i, - 1 are non-negative and much smaller than unity, and 

The singularity contribution towards the value of ap/arp from the lower sheet of 
the bifurcation surface is proportional - as in (I 66) - to the integral of Y-Ic-, over 
the interval 1 < r^ < to, where i,, which plays the role of to appearing in (I 75), is a 
parameter satisfying 0 < ip - 1 < i, - 1 4 1. However, since the singularity of Y-Ic=, 
a t  r = rp is not - like that of Y- at r = r,, z = zp ~ integrable, we must here consider 
the Cauchy principal value of this integral. Breaking up the range of integration into 
the intervals 1 < P < tp-e  and Pp+e < 4 < Po over which the expression in (A 2) has 
two different forms, performing the integrations and letting e tend to zero, we find 
that 

€+--to. 

for 0 < i,-1 4 1. This must be compared with the corresponding result, (I 79), for 
a three-dimensional source distribution, which is proportional to  ( P t  - 1)-:. 

The singularity contribution from the upper sheet of the bifurcation surface can be 
calculated in a similar way: (I A 2) for e-+O yields 

Y+lc=o = 22/3(r";- l ) - - f (82<4-~[( i ; - l ) f+( i~- l )~] - f ,  (A 4) 
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which in turn implies that  

for 0 < ?,- 1 1. Since this is negligible compared to the contribution from the 
lower sheet in the present case as in 95 of Paper I, it follows that (ap/arp)z-zp diverges 
like (ti- 1)-% as tp+ 1 +. 

Appendix R 
In  this appendix we show that the singularity in the gradient of the retarded 

potential a t  the sonic cylinder, which in Paper I was derived on the basis of (7) ,  
follows also from the Duhamel’s form of this potential, (16).  Here we use the same 
notation as that  in Paper I and designate the equation numbers belonging to  this 
earlier paper by the prefix I. 

Just  as (7 )  of the present paper corresponds to (I l l) ,  the counterpart of (16) is 

@p, 2,) = c-l r d r  dp, dzj,(r, z ,  @)I& (B 1) 

in which @ stands for the value of p, - wt a t  the retarded time : 

@ = @p+q-p,p+Ro/C. 

The Jacobian d@/dp, of the mapping (B 2) vanishes on the bifurcation surface q5 = 
# * ( r ,  z ) ,  where q5 = G-6, and q5* are given in (I 22). Let us therefore exclude from 
V the small volumes 4- - c’ < $ < $- + e- and q5+ - e+ < q5 < $+ + E ; ,  which enclose 
the zeros of this Jacobian, by inserting the following combination of step functions 
in the integrand of equation (B 1 ) :  

K = O( - 7)  + O(7) {O($ - (b+ - €>) + O(& - €I_ - 4) + O($+ - 4- -€+ -€-) 

x - d- - 6-) - - d+ + S,)l>> (B 3) 

and proceed to the limit es+O after having calculated aAfl/arp. 
Thus the differentiation of (B 1) yields 

For the same reasons as those given in 95 of Paper I, the first two terms on the right- 
hand side of this equation do not receive any contributions from the boundaries of 
the excluded region in the limit es+O and need not be considered any further. The 
third term, on the other hand, only involves delta-functions and so consists entirely 
of boundary contributions: the derivative of O($-$++ei) ,  for instance, is given by 

In addition, since we are here concerned only with the contribution of the source 
elements which lie in the vicinity of the observation point, the domain of integration 
V can be regarded as the image under the mapping @+p) of the small volume A P  
(Paper I, $4) of the (r,z,@)-space. 
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When restricted to such a domain and integrated over q ~ ,  the third term in (B 4), 
which we here denote by (aAJarp)s,, can be written as 

/Ij are the angles shown in figure 2 of Paper I, and j,, is the average value of j p  over 
the small volume A F  (cf. (I 30)).t The derivatives ofR in this equation directly follow 
from (6) ; the remaining derivatives, 

are most easily obtained by differentiating the equation $* = q( / I * ) .  

introduced in equations (I 12) and (I 37)-(I 44), we arrive a t  
If we now insert these derivatives in (B 7)  and express xt in terms of the variables 

w2ki k,(sn2u- sn2 u k )  - cn u dn u +  cn u, - dn u* 
(B 9) f - -  

(dn u + k, cn u), (sn u - sn u * )  IY-uI. xr - c2;,, 

For u,, u4, u6 and u6 whose values in the limits E +  + 0 are u- or u,, this expression 
becomes indeterminate when either E ,  or 6- vanishes. The indeterminacies in (B 9) 
can easily be removed by writing 

- 
I (B 10) 

cnudnu-cnu, d n u k  - (sn u + sn u k )  (dn2 u + kt cn2 u, - ) 
cn udn  u+ cn u* dn urt 

-- 
sn u- sn u* 

and noting that the right-hand side of this equation has a finite value a t  u = u*. In 
addition, however, (B 9) becomes singular either when E ,  = 0 and u, -+ u, + u+ so that 
snu, = snu, = snu- and dnu, = dnu, = dnu- but cnu, = cnu, = --nu-, or when 
E- = 0 and us + u7 + u- so that sn u6 = sn u7 = sn u+ and dn us = dn u7 = dn u+ but 
cnu, = cnu, = --nu,. In  both cases the denominators in (B 9) vanish while the 
numerators remain finite. 

For the same reasons as those given in the case of (B 9): therefore, the only terms 
in (i3Ap/tkp)s, which can survive in the limit E S + O  are the following ones whose 
integrands possess the above singularities : 

where 

! (B 12) 
cn u, dn u6 - cn u, dn u, 

(dn u6 + k, cn u,), (sn u6 - sn u,) 

cn u2 dn ug - cn u- dn u- 
(dn up + k, cn u,), (sn u, - sn u-) 

- cn u, dn u7 - cn u+ dn u, 
(dn u7 + k, cn u7), (sn u, -sn u,) 

cn us dn us- cn u- dn u- 
(dn u, + k, cn u,), (sn u, - sn u-) 

Y- = 
and 

. (B 13) 

t Note that in order to be able to approximate j , ( r ,  z,+) by j it is essential that we exclude the 
zeros of the Jacobian d+/dp, by excising an interval in +, whicc is one of the arguments of j,. We 
would not have been able to simplify j, in this way if we had excluded the zeros of the Jacobian 
by excising an interval in p. 

- p =  + -  
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The remaining calculations, i.e. the determination of the relevant uj and the 
evaluation of the integrals over AS, are closely related to the calculations outlined in 
$ 5  and the Appendix of Paper I .  Their end result is that the two quantities 
(aAp/arp)s, have precisely the same values as those of (i3Ap/Clrp)se which are 
given in ( f 7 9 )  and (I A 7). 

Appendix C 
In  this appendix we consider one-dimensional line sources of sound and show that 

when these have a supersonic rotational motion in a direction perpendicular to their 
own elongation, they give rise to a sound amplitude which is logarithmically 
divergent on certain surfaces in space. To emphasize that the particular singularities 
discussed in this appendix are removed when the source is extended, we shall also 
briefly consider a two-dimensional rotating source which lies in the meridional plane. 
The notation is the same as that in Paper I and the equation numbers belonging to 
Paper I carry the prefix I. 

The first step in the calculation of the sound amplitude from any non-compact 
source distribution is the determination of the retarded times for fixed ( r , z , @ )  and 
(rp,zP,Gp),  i.e. the determination of the solutions p of (I 16). Since we are here 
interested merely in the singularities of the sound amplitude (which arise from the 
source elements on the intersection of the source with the bifurcation surface), 
however, we only need the solutions of (I 16) in the neighbourhoods of source points 
(r, ,z*,$+) which lie on one of the sheets ( * )  of the bifurcation surface q5 = q5, (see 
(I 22)). So, the transcendental equation (I 16) can be solved, for the purposes of the 
present appendix, by expanding the function g ( p ,  r ,  z )  that appears in this equation 
into a Taylor series about ,5 = ,8*, F = P ,  and x" = x",, where P = rw/c  and x" = zw/c.  

This Taylor expansion of g, up to the-order needed here, is 

in which 

(The first-order derivative ag/ap vanishes a t  /3 = pk, and the mixed second-ordcr and 
the third-order terms involving P-P,  and x"--x"* do not enter the present calculation.) 
Because the next step in the calculation after solving (I 16) will be to  insert the 
resulting values of ,b in 

D = 2crk-'[(1- k2 sin2p)t - crk sin ~ c o s p ]  (C 4) 
which appears in the denominator of the Green's function Go (see (I 15) and ( I  17)) .  
we will also need the following Taylor expansion of D :  

DCp, r ,  2) = bi*(@-P*) + bz*(+-;+) +b,,(i--*) + b , k ( p - p k ) 2  + . . . (( ' 5) 

where b, ,  = T24, b2* = $h* a6+, b,, = u2+ ,  - b,, = 2h+ - f a , :  ( (  t i J  
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(Recall that p+ and h ,  are known in terms of P, and f ,  from (I 19) and (I 20)). 
Let us first consider a one-dimensional source which, in the rotating frame, lies 

along the straight line z" = f,, @ = @, perpendicular to the axis of rotation, i.e. which 
has a density proportional to S ( f -  f,) a(@-@,), where f ,  and @, are constants. In this 
case, both g and D are functions of the two variables (p, r )  only, and (C 1) and (C 5) 
do not contain any terms involving f-f,. If the observation point is arbitrary, so 
that all the coefficients aj+ and b,, are no&-zero, the dominant terms in (C 1) are the 
first three existing terms and hence the solution to g = $+ for (P , i 0 ,@, )  in the 
neighbourhoods of the two points ( P o + ,  f0,@,), at which the linesource pierces the two 
sheets of the bifurcation surface, are given by 

where Po+ < P < Po-, i.e. ( P ,  z",,@,) lies inside the bifurcation surface, and there are two 
solutions differing by sign at each point. Since this and (C 5) imply that D vanishes 
like l P - P o + l ;  near ( P o + ,  f0,@,), the corresponding singularity of Go is integrable and 
therefore the  sound -amplitude is finite a t  arbitrary observation points. If the 
observation point is such that the line source crosses the bifurcation surface a t  a 
point on the cusp curve, then A = 0 and (C 1) and (C 5 )  yield 

and hence a D which vanishes like ( + - P o + ) $ ;  even in this case the singularity of Go is 
integrable, so long as the observation point does not lie on the source. 

However, there are certain observation points outside the above radial line source 
for which a,- = 0 a t  (to-, z",,@,) and, as a result, the singularity of Go is not integrable. 
(Note that a,, + 0 for P+ > 1.) For a,- = 0, the zeroth and the second-order terms in 
(C 1) are the dominant ;ones, and the solutions to g = $+ - are given by 

p-po- = tl(P;-;;-)"(;;--P:-+ l)i]-l(P-PO-)+ ..., (C 9) 

provided that 4;- <;(;t+l). Whcn these are inserted in ( C 5 ) ,  we obtain the 
following two values for D :  

D = T(P;-2?;-+l);(P-+,-)+..., (C 10) 

both of which give rise to logarithmically divergent contributions towards the sound 
amplitude. 

For any given supersonic element P = Po- > 1 on the radial line source, the 
constraint a,- = 0 is satisfied on the following surface 

P i  - ( f p  - i o ) 2 / ( ; ; -  - 1 )  = ;:-, (C 11)  

which re resents a hyperboloid in the ( rp ,  z,,@,)-space. When the section 4, 2 
(2;;- - 1)s of hyperboloid (C 11) intersects the lower sheet of the caustic associated 
with the source element (Po- ,  f u ,  @,,), the contribution of this source element towards 
the sound amplitude diverges a t  all points on the intersection curve. The sound 
amplitude of the whole line source is therefore divergent on the following surface 
which is formed by the collection of such intersection curves: 

P 

G ~ - G ,  = aresin{+(l - ; p 2 ) + l a ( l - & ; 2 ) 2 - ; p 4 ( i p - i 0 ) 2 ~ f } i  

- {+(P;  - 1) + (z"p - i 0 ) 2  + [a(+; - 1)* - (2,- f 0 ) 2 ] 4 } t .  (C 12) 
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Equation (C 12) may be obtained by the elimination of 3,- between (C 11) and the 
equation for the caustic associated with (to-, i0,@,), or equivalently the equation for 
the bifurcation surface associated with (r,, z,, @,). 

= Go, then from 
(C 11) and (C 12) it follows that the divergence occurs a t  the sonic cylinder 3, = 1 and 
is caused by the source element +,- = 1 located a t  the observation point. For 3, = 

3,- = 1, on the other hand, not only does the first term in the expansion of D that  is 
given in (C 10) vanish ~ which would of itself imply a stronger singularity in the 
sound amplitude - but in addition the right-hand side of (C 9), as well as the higher- 
order terms of D, diverge. This is because for 3, = 30- = 1 we have h- = 0 and the 
Taylor expansion (C 1) breaks down altogether: g is no longer an analytic function 
of p a t  a source point which coincides with the observation point (see Paper I, $4). 

The results for a line source parallel to  the rotation axis, i.e. for a source density 
proportional to  a(@-@,) &(3-+,) ,  are very similar to those which are obtained above. 
In this case, the expansions (C 1 )  and (C 5) contain terms involving @-@, and i-i, 
only, and for an observation point that  renders a2+ zero, we have the following 
counterparts of (C 9) and (C 10): 

If we set the observation point on the source, i.e. let ip = 2, and 

D = T (3; - 1)i (+; - 1)f (i - Z0+) + . . . , (C 14) 
and hence a logarithmic singularity in the sound amplitude. The locus of the 
singularity in the (r,, z,, @,)-space is 

GP -@o = arcsin [301(1- ~ 2 ) ;  + 3-1 , ( 1  - r";2)4] - (."; - 1);- (3; - 1);. (C 15) 

This cylindrical surface touches the sonic cylinder along one of its generators, which 
are straight lines parallel to the 2,-axis. On this generator 3, equals 1 and the right- 
hand side of (C 13) diverges; but this is because the coefficient of (p-p*)' in (C 1) 
vanishes and the term (/3-/?+)3 becomes significant in this case. The breakdown of 
the Taylor expansion itself occurs only if an observation point on the surface (C 15) 
coincides with a source point, i.e. if @, =Go,  8 ,  = 3, = 1, and hence the source 
element 2, = io+ which makes the divergent contribution moves at the speed of 
sound. 

In the case of a general one-dimensional source which is concentrated on an 
arbitrary curve r = r (A) ,  z = z ( A ) ,  $5 = @ ( A ) ,  expansions (C 1) and (C 5) contain both 
the  terms involving 3 - 3 ,  and those involving z"-2, ; all of these, however, can be 
expressed in terms of A-A,, where A is the curve parameter and A ,  its value at the 
intersection of the curve and the bifurcation surface. The coefficient of the first-order 
term A - A +  in expansion (C 1 )  would vanish if i3g/aAlA-Ar = 0, i.e. if i .Vg = 0, 
where i is the unit vector tangent to the line source at the point A = A,. Since g 
depends on x only through R (see (I lO)-(I 14)), this is equivalent to the constraint 
i.Vlx-x,l = 0 or ?-(x-x,) = 0. (Note that the conditions a,- = 0 and a,+ = 0 
encountered above are particular examples of this constraint in which i is the base 
vector t$ and iZ, respectively.) As long as certain elements of the source move with 
the speed of sound in a direction perpendicular to its elongation, therefore, there will 
be a divergent sound amplitude. Only the shape of the surface on which the sound 
amplitude diverges is different for different line sources (cf. (C 12) and (C 15)). On the 
other hand, a supersonic source consisting of a circular arc which rotates along its 
own elongation in the azimuthal direction does not produce a divergent sound 
amplitude anywhere except on itself (see (I 36)). 
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In  contrast, the sound amplitude due to a two-dimensional planar source 
distribution, which rotates about the z-axis, is finite even on the source itself. In  the 
case of a source which lies in the equatorial plane, this follows from the fact that the 
singularities of the elliptic integrals appearing in (I 36) are integrable. For a two- 
dimensional rotating source which lies in the meridional plane @ = c $ ~ ,  however, this 
follows from the present analysis only if the observation point is not located on the 
sonic cylinder. The point on the bifurcation surface for which the coefficients a l ,  and 
a2+ in (C 1) vanish simultaneously, is Fo+ = 1,  .Z0, = 5,. And the solution to g = q 5 + ,  - 
and the expression for D ,  in the neighbourhood of this point are 

p - po = f (Z)t ( F  - 1): - Q (ti - l ) - t  ( F  - 1)-1 (5 - Zlp)2 + . . . , (C 16) 

(C 17) D = 2(Fi - 1); (r"- 1 )  t($ ( F -  l)-t (5- 5,)2 + . . . . 
The corresponding expression for Go,  therefore, has a point singularity a t  r" = 1,  z" = 
5, that is integrable, unless F p  = 1, in which case these Taylor expansions break down 
altogether. It can be shown - by first integrating the integrand in (I 13) over z and 
then expanding the argument of the resulting square root in a power series - that the 
sound amplitude itself is in the case of F, = 1, too, finite everywhere. What diverges 
is the radial gradient of this amplitude a t  the points where the plane @ = @o intersects 
the sonic cylinder (see also Appendix A). 

Note added in proof. The following results, which were obtained after the paper 
was written, are of direct relevance to the discussions in $54 and 7 :  
1.  It is possible to give a much simpler derivation of the singularity in the gradient 
of the sound amplitude which occurs a t  the sonic cylinder by means of a frequency- 
domain analysis (Ardavan 1991). 
2. The sound amplitude of a rigidly rotating two-dimensional shell source can have 
singularities that are even algebraic, provided that the shape of the shell in the 
neighbourhood of a point on the sonic cylinder is sufficiently close to  the shape of one 
of the sheets of the observer's bifurcation surface which passes through that point. 
This follows from an analysis similar to that presented in Appendix C, in which the 
Taylor expansions of the phase function g and the shape functions q5 = $+ about the 
point a,, = a,+ = 0 are performed in powers of z - z p  and A ,  and are carried as far 
as the fifth order. 
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